Proposition 8.2.3.7. Suppose we are given a morphism of couplings
The following conditions are equivalent:
- $(1)$
The diagram (8.37) exhibits the coupling $\lambda $ as represented by the functor $G$ (in the sense of Definition 8.2.3.1).
- $(2)$
For every object $C \in \operatorname{\mathcal{C}}_{+}$, the functor $\widetilde{G}$ induces an equivalence of $\infty $-categories
\[ \widetilde{G}_{C}: \operatorname{\mathcal{C}}\times _{ \operatorname{\mathcal{C}}_{+} } \{ C \} \rightarrow \operatorname{Tw}(\operatorname{\mathcal{C}}_{-}) \times _{ \operatorname{\mathcal{C}}_{-} } \{ G(C) \} . \]- $(3)$
The coupling $\lambda $ is representable and, for every universal object $C \in \operatorname{\mathcal{C}}$, the image $\widetilde{G}(C) \in \operatorname{Tw}(\operatorname{\mathcal{C}}_{-} )$ is an isomorphism (when viewed as a morphism of the $\infty $-category $\operatorname{\mathcal{C}}_{-}$).
- $(4)$
The coupling $\lambda $ is representable and the triple $(\operatorname{id}, \widetilde{G}, G)$ is initial when viewed as an object of the $\infty $-category $\{ \operatorname{id}\} \times _{ \operatorname{Fun}( \operatorname{\mathcal{C}}_{-}, \operatorname{\mathcal{C}}_{-} )^{\operatorname{op}} } \operatorname{Fun}_{\pm }( \operatorname{\mathcal{C}}, \operatorname{Tw}(\operatorname{\mathcal{C}}_{-} ) )$.