Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Proposition 8.6.2.8. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category, let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be a cocartesian fibration, and let $U^{\dagger }: \operatorname{\mathcal{E}}^{\dagger } \rightarrow \operatorname{\mathcal{C}}^{\operatorname{op}}$ be a cartesian fibration. Suppose we are given a commutative diagram

\[ \xymatrix@R =50pt@C=50pt{ \operatorname{\mathcal{E}}^{\dagger } \times _{ \operatorname{\mathcal{C}}^{\operatorname{op}} } \operatorname{Tw}(\operatorname{\mathcal{C}}) \ar [rr]^{ T } \ar [dr] & & \operatorname{\mathcal{E}}\ar [dl]^{ U } \\ & \operatorname{\mathcal{C}}, & } \]

which we identify with a functor $F: \operatorname{\mathcal{E}}^{\dagger } \rightarrow \operatorname{Fun}_{ / \operatorname{\mathcal{C}}}( \operatorname{Tw}(\operatorname{\mathcal{C}}) / \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{E}})$. The following conditions are equivalent:

$(a)$

The functor $T$ exhibits $U^{\dagger }$ as a cartesian conjugate of $U$ (in the sense of Definition 8.6.1.1).

$(b)$

The functor $F$ restricts to an equivalence of $\operatorname{\mathcal{E}}^{\dagger }$ with the full subcategory

\[ \operatorname{Fun}_{ / \operatorname{\mathcal{C}}}^{\operatorname{CCart}}( \operatorname{Tw}(\operatorname{\mathcal{C}}) / \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{E}}) \subseteq \operatorname{Fun}_{ / \operatorname{\mathcal{C}}}( \operatorname{Tw}(\operatorname{\mathcal{C}}) / \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{E}}) \]

introduced in Construction 8.6.2.2.

Proof. Let $\lambda = (\lambda _{-}, \lambda _{+}): \operatorname{Tw}(\operatorname{\mathcal{C}}) \rightarrow \operatorname{\mathcal{C}}^{\operatorname{op}} \times \operatorname{\mathcal{C}}$ denote the twisted arrow fibration of Example 8.2.0.2. Recall that $(a)$ is equivalent to the following pair of conditions:

$(a_1)$

For every object $C \in \operatorname{\mathcal{C}}$, the restriction of $T$ to the fiber over the vertex $\{ \operatorname{id}_{C} \} \subseteq \operatorname{Tw}(\operatorname{\mathcal{C}})$ determines an equivalence of $\infty $-categories $T_{C}: \operatorname{\mathcal{E}}^{\dagger } \times _{ \operatorname{\mathcal{C}}^{\operatorname{op}} } \{ C\} \rightarrow \{ C \} \times _{ \operatorname{\mathcal{C}}} \operatorname{\mathcal{E}}$.

$(a_2)$

Let $(e',e)$ be an edge of the fiber product $\operatorname{\mathcal{E}}^{\dagger } \times _{ \operatorname{\mathcal{C}}^{\operatorname{op}} } \operatorname{Tw}(\operatorname{\mathcal{C}})$. If $e'$ is a $U^{\dagger }$-cartesian morphism of $\operatorname{\mathcal{E}}^{\dagger }$, then $T(e',e)$ is a $U$-cocartesian morphism of $\operatorname{\mathcal{E}}$.

Unwinding the definitions, we see that $F$ factors through $\operatorname{Fun}_{ / \operatorname{\mathcal{C}}}^{\operatorname{CCart}}( \operatorname{Tw}(\operatorname{\mathcal{C}}) / \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{E}})$ if and only if $T$ satisfies the following weaker version of $(a_2)$:

$(b_0)$

Let $(e',e)$ be an edge of the fiber product $\operatorname{\mathcal{E}}^{\dagger } \times _{ \operatorname{\mathcal{C}}^{\operatorname{op}} } \operatorname{Tw}(\operatorname{\mathcal{C}})$. If $e'$ is a degenerate edge of $\operatorname{\mathcal{E}}^{\dagger }$, then $T(e',e)$ is a $U$-cocartesian morphism of $\operatorname{\mathcal{E}}$.

If this condition is satisfied, then we have a commutative diagram

\[ \xymatrix@R =50pt@C=50pt{ \operatorname{\mathcal{E}}^{\dagger } \ar [rr]^{F} \ar [dr]^{ U^{\dagger } } & & \operatorname{Fun}_{ / \operatorname{\mathcal{C}}}^{\operatorname{CCart}}( \operatorname{Tw}(\operatorname{\mathcal{C}}) / \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{E}}) \ar [dl]^{ V } \\ & \operatorname{\mathcal{C}}^{\operatorname{op}}, & } \]

where the vertical maps are cartesian fibrations (Lemma 8.6.2.7). Using Theorem 5.1.6.1, we see that $F$ is an equivalence if and only if it satisfies the following further conditions:

$(b_1)$

For each object $C \in \operatorname{\mathcal{C}}$, the functor $F$ restricts to an equivalence of $\infty $-categories

\[ F_{C}: \operatorname{\mathcal{E}}^{\dagger }_{C} = \operatorname{\mathcal{E}}^{\dagger } \times _{ \operatorname{\mathcal{C}}^{\operatorname{op}}} \{ C\} \rightarrow \operatorname{Fun}_{ / \operatorname{\mathcal{C}}}^{\operatorname{CCart}}( \operatorname{Tw}(\operatorname{\mathcal{C}}) / \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{E}}) \times _{ \operatorname{\mathcal{C}}^{\operatorname{op}} } \{ C\} . \]
$(b_2)$

The functor $F$ carries $U^{\dagger }$-cartesian morphisms of $\operatorname{\mathcal{E}}^{\dagger }$ to $V$-cartesian morphisms of $\operatorname{Fun}_{ / \operatorname{\mathcal{C}}}^{\operatorname{CCart}}( \operatorname{Tw}(\operatorname{\mathcal{C}}) / \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{E}})$.

Let $C$ be an object of $\operatorname{\mathcal{C}}$. Unwinding the definitions, we can identify the fiber

\[ \operatorname{Fun}_{ / \operatorname{\mathcal{C}}}^{\operatorname{CCart}}( \operatorname{Tw}(\operatorname{\mathcal{C}}) / \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{E}}) \times _{ \operatorname{\mathcal{C}}^{\operatorname{op}} } \{ C\} \]

with the $\infty $-category $\operatorname{Fun}^{\operatorname{CCart}}_{ / \operatorname{\mathcal{C}}}( \{ C\} \times _{ \operatorname{\mathcal{C}}^{\operatorname{op}} } \operatorname{Tw}(\operatorname{\mathcal{C}}), \operatorname{\mathcal{E}})$. Since $\operatorname{id}_{C}$ is initial when viewed as an object of the $\infty $-category $\{ C\} \times _{ \operatorname{\mathcal{C}}^{\operatorname{op}} } \operatorname{Tw}(\operatorname{\mathcal{C}})$ (Proposition 8.1.2.1), Proposition 5.3.1.21 guarantees that the evaluation map

\[ \operatorname{Fun}^{\operatorname{CCart}}_{ / \operatorname{\mathcal{C}}}( \{ C\} \times _{ \operatorname{\mathcal{C}}^{\operatorname{op}} } \operatorname{Tw}(\operatorname{\mathcal{C}}), \operatorname{\mathcal{E}}) \rightarrow \{ C\} \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{E}} \]

is a trivial Kan fibration. Moreover, the composition of this evaluation map with the functor $F_{C}$ coincides with the functor $T_{C}$ appearing in condition $(a_1)$. It follows that conditions $(a_1)$ and $(b_1)$ are equivalent.

Using the characterization of $V$-cartesian morphisms supplied by Lemmas 8.6.2.6 and 8.6.2.7, we can reformulate $(b_2)$ more concretely as follows:

$(b'_2)$

Let $(e',e)$ be an edge of the fiber product $\operatorname{\mathcal{E}}^{\dagger } \times _{ \operatorname{\mathcal{C}}^{\operatorname{op}} } \operatorname{Tw}(\operatorname{\mathcal{C}})$. If $e'$ is a $U^{\dagger }$-cartesian morphism of $\operatorname{\mathcal{E}}^{\dagger }$ and $\lambda _{+}(e)$ is an isomorphism in $\operatorname{\mathcal{C}}$, then $T(e',e)$ is an isomorphism in the $\infty $-category $\operatorname{\mathcal{E}}$.

To complete the proof, it will suffice to show that the functor $T$ satisfies $(a_2)$ if and only if it satisfies both $(b_0)$ and $(b'_2)$. The implication $(a_2) \Rightarrow (b_0)$ is immediate, and the implication $(a_2) \Rightarrow (b'_2)$ follows from Corollary 5.1.1.9. The reverse implication follows from Proposition 8.6.1.13. $\square$