Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Corollary 8.6.5.2. For every simplicial set $\operatorname{\mathcal{C}}$, the formation of cocartesian duals induces a bijection

\[ \xymatrix@C =50pt@R=50pt{ \{ \textnormal{Cocartesian fibrations $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$} \} / \textnormal{Equivalence} \ar [d]^{\theta } \\ \{ \textnormal{Cocartesian fibrations $U^{\vee }: \operatorname{\mathcal{E}}^{\vee } \rightarrow \operatorname{\mathcal{C}}$} \} / \textnormal{Equivalence.} } \]

Proof. Theorem 8.6.5.1 implies that $\theta $ is well-defined, and Remark 8.6.4.3 implies that $\theta \circ \theta $ is the identity; in particular, $\theta $ is a bijection. $\square$