Lemma 8.6.5.14. Let $\kappa $ be an uncountable cardinal, let $\operatorname{\mathcal{E}}$ be an $\infty $-category which is locally $\kappa $-small, and let $\mathscr {F}: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{S}}^{< \kappa }$ be a functor. Suppose we are given a functor $U: \operatorname{\mathcal{E}}\rightarrow \Delta ^1$ and a $U$-cocartesian morphism $e: X \rightarrow Y$ of $\operatorname{\mathcal{E}}$ satisfying $U(X) = 0$ and $U(Y) = 1$. Write $\operatorname{\mathcal{E}}_0 = \{ 0\} \times _{ \Delta ^1} \operatorname{\mathcal{E}}$ and $\operatorname{\mathcal{E}}_1 = \{ 1\} \times _{\Delta ^1} \operatorname{\mathcal{E}}$, and let $\eta \in \mathscr {F}(X)$ be a vertex which exhibits the functor $\mathscr {F}_0 = \mathscr {F}|_{ \operatorname{\mathcal{E}}_0 }$ as corepresented by the object $X$. The following conditions are equivalent:
- $(1)$
The functor $\mathscr {F}$ is left Kan extended from $\operatorname{\mathcal{E}}_0$.
- $(2)$
The vertex $\eta $ exhibits the functor $\mathscr {F}$ as corepresented by $X$.
- $(3)$
The vertex $\mathscr {F}(e)(\eta ) \in \mathscr {F}(Y)$ exhibits the functor $\mathscr {F}_1 = \mathscr {F}|_{ \operatorname{\mathcal{E}}_1 }$ as corepresented by the object $Y \in \operatorname{\mathcal{E}}_1$.