Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Proposition 8.6.4.18. Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ and $U^{\vee }: \operatorname{\mathcal{E}}^{\vee } \rightarrow \operatorname{\mathcal{C}}$ be cocartesian fibrations of simplicial sets. Let $\kappa $ be an uncountable cardinal such that $U$ is locally $\kappa $-small. Fix a morphism $\mathscr {K}: \operatorname{\mathcal{E}}^{\vee } \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{S}}^{< \kappa }$, which we identify with a morphism $F: \operatorname{\mathcal{E}}^{\vee } \rightarrow \operatorname{Fun}(\operatorname{\mathcal{E}}/\operatorname{\mathcal{C}}, \operatorname{\mathcal{S}}^{< \kappa } )$. Then:

$(1)$

The morphism $\mathscr {K}$ is a weak $\operatorname{\mathcal{C}}$-family of corepresentable profunctors if and only if $F$ factors through the simplicial subset $\operatorname{Fun}^{\operatorname{corep}}(\operatorname{\mathcal{E}}/\operatorname{\mathcal{C}}, \operatorname{\mathcal{S}}^{<\kappa }) \subseteq \operatorname{Fun}(\operatorname{\mathcal{E}}/\operatorname{\mathcal{C}}, \operatorname{\mathcal{S}}^{< \kappa })$.

$(2)$

The morphism $\mathscr {K}$ is a $\operatorname{\mathcal{C}}$-family of corepresentable profunctors if and only if $F$ factors through $\operatorname{Fun}^{\operatorname{corep}}(\operatorname{\mathcal{E}}/\operatorname{\mathcal{C}}, \operatorname{\mathcal{S}}^{< \kappa } )$ and carries $U^{\vee }$-cocartesian edges of $\operatorname{\mathcal{E}}^{\vee }$ to $\pi ^{\operatorname{corep}}$-cocartesian edges of $\operatorname{Fun}^{\operatorname{corep}}(\operatorname{\mathcal{E}}/\operatorname{\mathcal{C}}, \operatorname{\mathcal{S}}^{< \kappa })$. Here $\pi ^{\operatorname{corep}}: \operatorname{Fun}^{\operatorname{corep}}( \operatorname{\mathcal{E}}/\operatorname{\mathcal{C}}, \operatorname{\mathcal{S}}^{< \kappa }) \rightarrow \operatorname{\mathcal{C}}$ denotes the cocartesian fibration of Proposition 8.6.4.12.

$(3)$

The morphism $\mathscr {K}$ exhibits $U^{\vee }$ as a cocartesian dual of $U$ if and only if $F: \operatorname{\mathcal{E}}^{\vee } \rightarrow \operatorname{Fun}^{\operatorname{corep}}( \operatorname{\mathcal{E}}/ \operatorname{\mathcal{C}}, \operatorname{\mathcal{S}}^{< \kappa } )$ is an equivalence of cocartesian fibrations over $\operatorname{\mathcal{C}}$.

Proof. Assertion $(1)$ is immediate from the definitions and assertion $(2)$ follows from Lemma 8.6.4.15. Assertion $(3)$ follows by combining $(2)$ with Example 8.6.4.17 (see Proposition 5.1.7.14). $\square$