Proposition 7.4.3.11. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $F: \operatorname{\mathcal{C}}' \rightarrow \operatorname{\mathcal{C}}$ be a morphism of simplicial sets. The following conditions are equivalent:
- $(1)$
The morphism $F$ is right cofinal (Definition 7.2.1.1).
- $(2)$
For every functor of $\infty $-categories $G: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ which admits a colimit $X = \varinjlim (G)$, the object $X \in \operatorname{\mathcal{D}}$ is also a colimit of the diagram $(G \circ F): \operatorname{\mathcal{C}}' \rightarrow \operatorname{\mathcal{D}}$.
- $(3)$
For every uncountable regular cardinal $\kappa $ and every diagram $G: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{S}}^{< \kappa }$ which admits a colimit $X = \varinjlim (G)$, the object $X \in \operatorname{\mathcal{S}}^{< \kappa }$ is also a colimit of the diagram $(G \circ F): \operatorname{\mathcal{C}}' \rightarrow \operatorname{\mathcal{S}}^{< \kappa }$.
- $(4)$
For every uncountable regular cardinal $\kappa $ and every corepresentable functor $G: \operatorname{\mathcal{C}}' \rightarrow \operatorname{\mathcal{S}}^{< \kappa }$, the colimit $\varinjlim ( G \circ F)$ is contractible.