Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Remark 9.2.3.10. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category containing a $2$-simplex

\[ \xymatrix@C =50pt@R=50pt{ & Y \ar [dr]^{v} & \\ X \ar [ur]^{u} \ar [rr]^{w} & & Z. } \]

If an object $C \in \operatorname{\mathcal{C}}$ is weakly $u$-local and weakly $v$-local, then it is weakly $w$-local. Conversely, if $C$ is weakly $w$-local, then it is weakly $u$-local.