Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Remark 9.2.7.6. Let $f$ and $g$ be morphisms in an $\infty $-category $\operatorname{\mathcal{C}}$. Then $f$ is left orthogonal to $g$ in $\operatorname{\mathcal{C}}$ if and only if it is right orthogonal to $g$ when regarded as a morphism of the opposite $\infty $-category $\operatorname{\mathcal{C}}^{\operatorname{op}}$.