Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Corollary 9.2.7.23. Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be an inner fibration of $\infty $-categories and let $f$ and $g$ be morphisms of $\operatorname{\mathcal{E}}$. Assume either that $f$ is $U$-cocartesian or that $g$ is $U$-cartesian. Then:

  • If $U(f)$ is left orthogonal to $U(g)$ in the $\infty $-category $\operatorname{\mathcal{C}}$, then $f$ is left orthogonal to $g$ in the $\infty $-category $\operatorname{\mathcal{E}}$.

  • If $U(f)$ is weakly left orthogonal to $U(g)$ in the $\infty $-category $\operatorname{\mathcal{C}}$, then $f$ is weakly left orthogonal to $g$ in the $\infty $-category $\operatorname{\mathcal{E}}$.