Notation 9.2.8.5. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category containing morphisms $f: A \rightarrow B$ and $g: X \rightarrow Y$. We let $\widetilde{f} = s^{1}_{1}(f)$ and $\widetilde{g} = s^{1}_{0}(g)$ denote the degenerate $2$-simplices of $\operatorname{\mathcal{C}}$ depicted in the diagram
Let $\beta : \Delta ^2 \times \Delta ^1 \rightarrow \Delta ^3$ denote the morphism of simplicial sets given on vertices by the formulae
Then precomposition with $\beta $ determines a functor $\operatorname{Fun}( \Delta ^3, \operatorname{\mathcal{C}}) \rightarrow \operatorname{Fun}( \Delta ^2 \times \Delta ^1, \operatorname{\mathcal{C}})$, which restricts to a map of Kan complexes $T: {}_{f}\operatorname{Fun}(\Delta ^3, \operatorname{\mathcal{C}})_{g} \rightarrow \operatorname{Hom}_{ \operatorname{Fun}(\Delta ^2,\operatorname{\mathcal{C}})}( \widetilde{f}, \widetilde{g} )$. Concretely, $T$ carries a $3$-simplex
to the morphism in $\operatorname{Fun}(\Delta ^2, \operatorname{\mathcal{C}})$ depicted in the diagram