Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Remark 10.2.1.17. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category, let $X_{\bullet }$ be a simplicial object of $\operatorname{\mathcal{C}}$, and let $X$ be an object of $\operatorname{\mathcal{C}}$. Then $X$ is a geometric realization of $X_{\bullet }$ (in the sense of Definition 10.2.1.3) if and only if there exists an augmented simplicial object $\overline{X}_{\bullet }$ which exhibits $X$ as a geometric realization of $X_{\bullet }$ (in the sense of Definition 10.2.1.16). See Remark 7.1.3.7.