Definition 10.2.2.15 (Augmented Semisimplicial Objects). Let $\operatorname{\mathcal{C}}$ be an $\infty $-category. An augmented semisimplicial object of $\operatorname{\mathcal{C}}$ is a functor from the $\infty $-category $\operatorname{N}_{\bullet }( \operatorname{{\bf \Delta }}^{\operatorname{op}}_{\operatorname{inj},+} )$ to $\operatorname{\mathcal{C}}$. An augmented cosemisimplicial object is a functor from the $\infty $-category $\operatorname{N}_{\bullet }( \operatorname{{\bf \Delta }}_{+} )$ to $\operatorname{\mathcal{C}}$.
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$