Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Proposition 10.1.5.6. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category which admits pullbacks. Then every morphism $f: X \rightarrow Y$ in $\operatorname{\mathcal{C}}$ admits a Čech nerve $\operatorname{\check{C}}_{\bullet }(X/Y)$.

Proof. Apply Corollary 10.1.4.6 to the $\infty $-category $\operatorname{\mathcal{C}}_{/Y}$, which admits finite products by virtue of our assumption that $\operatorname{\mathcal{C}}$ admits pullbacks (Corollary 7.6.3.20). $\square$