Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Remark 10.3.1.31. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $\operatorname{\mathcal{C}}^{0}_{/X} \subseteq \operatorname{\mathcal{C}}^{1}_{/X} \subseteq \operatorname{\mathcal{C}}_{/X}$ be sieves on an object $X$. If $\operatorname{\mathcal{C}}^{0}_{/X}$ is dense, then $\operatorname{\mathcal{C}}^{1}_{/X}$ is also dense. See Proposition 7.3.8.6.