Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Remark 9.3.2.13. Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a fully faithful functor of $\infty $-categories, and let $X$ be an object of $\operatorname{\mathcal{C}}$. Then:

  • If $F(X)$ is a discrete object of $\operatorname{\mathcal{D}}$, then $X$ is a discrete object of $\operatorname{\mathcal{C}}$.

  • If $F(X)$ is a subterminal object of $\operatorname{\mathcal{D}}$, then $X$ is a subterminal object of $\operatorname{\mathcal{C}}$.

In both cases, the converse holds if $F$ is an equivalence of $\infty $-categories.