Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Example 9.2.4.7. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category and let $f: X_0 \rightarrow X$ be a morphism of $\operatorname{\mathcal{C}}$. Then:

  • If the object $X$ is subterminal and $f$ is a monomorphism, then the object $X_0$ is also subterminal.

  • If the object $X_0$ is subterminal and the object $X$ is discrete, then $f$ is a monomorphism.

In particular, if $X$ is subterminal, then $f$ is a monomorphism if and only if $X_0$ is subterminal. See Proposition 9.2.3.13.