Proposition 10.3.3.11. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category containing a $2$-simplex
which exhibits $Y_0$ as an image of $f$. Then, for any monomorphism $i_1: Y_1 \hookrightarrow Y$ of $\operatorname{\mathcal{C}}$, the following conditions are equivalent:
- $(1)$
The morphism $f$ factors (up to homotopy) through $i_1$. That is, there exists a $2$-simplex
10.24\begin{equation} \begin{gathered}\label{equation:universal-property-of-image2} \xymatrix@R =50pt@C=50pt{ X \ar [r]^-{g} \ar [dr]^{f} & Y_1 \ar [d]^{i_1} \\ & Y } \end{gathered} \end{equation}in the $\infty $-category $\operatorname{\mathcal{C}}$.
- $(2)$
The containment $[Y_0] \subseteq [Y_1]$ holds (where we regard the isomorphism classes $[Y_0]$ and $[Y_1]$ as elements of the partiallly ordered set $\operatorname{Sub}(Y)$; see Notation 9.3.4.27).