Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Definition 10.3.3.17. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category. We say that $\operatorname{\mathcal{C}}$ has images if every morphism $f: X \rightarrow Y$ of $\operatorname{\mathcal{C}}$ has an image $\operatorname{im}(f) \in \operatorname{Sub}(Y)$.