Corollary 10.3.4.7. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category which admits pullbacks and let $f: X \rightarrow Y$ be a morphism of $\operatorname{\mathcal{C}}$. The following conditions are equivalent:
- $(1)$
The morphism $f$ is a universal quotient morphism.
- $(2)$
For every pullback diagram
\[ \xymatrix@R =50pt@C=50pt{ X' \ar [d]^{f'} \ar [r] & X \ar [d]^{f} \\ Y' \ar [r] & Y } \]of $\operatorname{\mathcal{C}}$, the morphism $f'$ is a universal quotient morphism.
- $(3)$
For every pullback diagram
\[ \xymatrix@R =50pt@C=50pt{ X' \ar [d]^{f'} \ar [r] & X \ar [d]^{f} \\ Y' \ar [r] & Y } \]of $\operatorname{\mathcal{C}}$, the morphism $f'$ is a quotient morphism.