Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Definition 10.3.5.1. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category. We say that $\operatorname{\mathcal{C}}$ is regular if it satisfies the following conditions:

$(1)$

The $\infty $-category $\operatorname{\mathcal{C}}$ admits finite limits.

$(2)$

The $\infty $-category $\operatorname{\mathcal{C}}$ has images. That is, every morphism $f: X \rightarrow Y$ of $\operatorname{\mathcal{C}}$ can be extended to a $2$-simplex

\[ \xymatrix@R =50pt@C=50pt{ & Y_0 \ar [dr]^{i} & \\ X \ar [ur]^{q} \ar [rr]^{f} & & Y, } \]

where $q$ is a quotient morphism and $i$ is a monomorphism.

$(3)$

The collection of quotient morphisms in $\operatorname{\mathcal{C}}$ is closed under pullback. That is, for every pullback diagram

\[ \xymatrix@C =50pt@R=50pt{ X' \ar [d]^{f'} \ar [r] & X \ar [d]^{f} \\ Y' \ar [r] & Y } \]

of $\operatorname{\mathcal{C}}$, if $f$ is a quotient morphism, then $f'$ is also a quotient morphism.