Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Example 3.5.9.4. Let $X$ be a Kan complex and let $n$ be an integer. Then $X$ is $n$-truncated (in the sense of Definition 3.5.7.1) if and only if the projection map $X \rightarrow \Delta ^0$ is $n$-truncated (in the sense of Definition 3.5.9.1). For $n \geq 0$, this is a restatement of Proposition 3.5.7.7.