Example 9.3.1.3. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category. For $n \leq -2$, an object $X \in \operatorname{\mathcal{C}}$ is $n$-truncated if and only if it is a final object of $\operatorname{\mathcal{C}}$ (Definition 4.6.7.1). In particular, this condition is independent of $n$, so long as $n \leq -2$. Consequently, in the setting of Definition 9.3.1.1, there is no loss of generality in assuming that $n \geq -2$.
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$