Remark 9.3.1.12. Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a functor of $\infty $-categories which preserves finite limits. Then, for every $n$-truncated object $X \in \operatorname{\mathcal{C}}$, the image $F(X)$ is an $n$-truncated object of $\operatorname{\mathcal{D}}$. This follows from the criterion of Remark 9.3.1.10.
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$