Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Proposition 9.3.1.18. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category, let $X$ be an object of $\operatorname{\mathcal{C}}$, and let $n \geq -2$ be an integer. Then $X$ is $n$-truncated if and only if it satisfies the following condition for each $m \geq n+3$:

$(\ast _ m)$

Every morphism $\sigma : \operatorname{\partial \Delta }^ m \rightarrow \operatorname{\mathcal{C}}$ satisfying $\sigma (m) = X$ can be extended to an $m$-simplex of $\operatorname{\mathcal{C}}$.

Proof. This is a special case of Proposition 4.8.6.20, since the object $X$ is $n$-truncated if and only if the right fibration $\operatorname{\mathcal{C}}_{/X} \rightarrow \operatorname{\mathcal{C}}$ is essentially $(n+1)$-categorical (Remark 9.3.1.13). $\square$