Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Remark 9.3.2.10. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category. The following conditions are equivalent:

  • The $\infty $-category $\operatorname{\mathcal{C}}$ is locally discrete.

  • The comparison map $\operatorname{\mathcal{C}}\rightarrow \operatorname{N}_{\bullet }( \mathrm{h} \mathit{\operatorname{\mathcal{C}}} )$ is a trivial Kan fibration.

  • There exists an ordinary category $\operatorname{\mathcal{C}}_0$ and an equivalence of $\infty $-categories $\operatorname{\mathcal{C}}\rightarrow \operatorname{N}_{\bullet }( \operatorname{\mathcal{C}}_0 )$.