Corollary 9.3.3.9 (Homotopy Invariance). Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be an equivalence of $\infty $-categories and let $f: X \rightarrow Y$ be a morphism of $\operatorname{\mathcal{C}}$. Then $f$ is $n$-truncated if and only if the image $F(f): F(X) \rightarrow F(Y)$ is $n$-truncated.
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$