Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Corollary 9.2.3.16 (Composition). Let $\operatorname{\mathcal{C}}$ be an $\infty $-category containing a $2$-simplex

\[ \xymatrix@R =50pt@C=50pt{ & Y \ar [dr]^{ g } & \\ X \ar [ur]^{f} \ar [rr]^{h} & & Z, } \]

and let $n$ be an integer. Then:

$(1)$

If the morphisms $f$ and $g$ are $n$-truncated, then the morphism $h$ is $n$-truncated.

$(2)$

If the morphism $h$ is $n$-truncated and the morphism $g$ is $(n+1)$-truncated, then the morphism $f$ is $n$-truncated.

Proof. Apply Proposition 9.2.3.13 to the slice $\infty $-category $\operatorname{\mathcal{C}}_{/Z}$ (see Proposition 9.2.3.7). $\square$