Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Corollary 9.3.3.21. Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a functor of $\infty $-categories. Suppose that $\operatorname{\mathcal{C}}$ admits pullbacks and that the functor $F$ preserves pullbacks. Then, for every integer $n$, the functor $F$ carries $n$-truncated morphisms of $\operatorname{\mathcal{C}}$ to $n$-truncated morphisms of $\operatorname{\mathcal{D}}$.

Proof. For $n \leq -2$, a morphism is $n$-truncated if and only if it is an isomorphism (Example 9.3.3.5), so the desired result follows from Remark 1.5.1.6. The general case follows by induction on $n$, using Corollary 9.3.3.20. $\square$