Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Remark 9.2.4.5. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category. Then a morphism $f: X_0 \rightarrow X$ is a monomorphism (in the sense of Definition 9.2.4.1) if and only if it is $(-1)$-truncated (in the sense of Definition 9.2.3.1). See Example 3.5.9.3.