Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Lemma 10.2.3.13. Let $k \geq 0$ and $n$ be integers, let $K = \{ 1, \cdots , k \} $, and let $P^{\leq n}(K)$ denote the partially ordered collection of all subsets $J \subseteq K$ which have cardinality $\leq n$. Then the assignment $J \mapsto \alpha _{J}$ of Construction 10.2.3.10 determines a right cofinal functor of $\infty $-categories

\[ \alpha : \operatorname{N}_{\bullet }( P^{\leq n}(K) ) \rightarrow \operatorname{N}_{\bullet }(\operatorname{{\bf \Delta }}_{ [k] / }^{\leq n})^{\operatorname{op}}. \]

Proof. This is a special case of Corollary 7.2.3.7, since the functor $\alpha $ has a left adjoint (which carries a morphism $f: [k] \rightarrow [m]$ to the subset $J = \{ j \in K: f(j-1) < f(j) \} \in P_{\leq n}(K)$). $\square$