Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Notation 8.6.6.13 (Relative Yoneda Embeddings). Let $U: \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{C}}$ be an inner fibration of simplicial sets, let $\kappa $ be an uncountable cardinal, and let

\[ \mathscr {H}: \operatorname{\mathcal{E}}^{\operatorname{op}} \times _{\operatorname{\mathcal{C}}^{\operatorname{op}}} \operatorname{Tw}(\operatorname{\mathcal{C}}) \times _{\operatorname{\mathcal{C}}} \operatorname{\mathcal{E}}\rightarrow \operatorname{\mathcal{S}}^{<\kappa } \]

be a relative $\operatorname{Hom}$-functor for $U$. Then $\mathscr {H}$ can be identified with a morphism

\[ T: \operatorname{\mathcal{E}}^{\operatorname{op}} \times _{\operatorname{\mathcal{C}}^{\operatorname{op}} } \operatorname{Tw}(\operatorname{\mathcal{C}}) \rightarrow \operatorname{Fun}( \operatorname{\mathcal{E}}/\operatorname{\mathcal{C}}, \operatorname{\mathcal{S}}^{< \kappa } ), \]

where $\operatorname{Fun}(\operatorname{\mathcal{E}}/\operatorname{\mathcal{C}}, \operatorname{\mathcal{S}}^{< \kappa })$ denotes the relative exponential of Construction 4.5.9.1. In this case, we will refer to $T$ as the relative Yoneda embedding of the inner fibration $U$.