Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Proposition 9.4.1.16. Let $\kappa $ be an uncountable regular cardinal and suppose we are given a commutative diagram of $\infty $-categories

9.31
\begin{equation} \begin{gathered}\label{equation:compare-notions-of-cocompletion2} \xymatrix@R =50pt@C=50pt{ \operatorname{\mathcal{E}}\ar [dr]_{ U } \ar [rr]^-{H} & & \widehat{\operatorname{\mathcal{E}}} \ar [dl]^{ \widehat{U} } \\ & \operatorname{\mathcal{C}}, & } \end{gathered} \end{equation}

where $U$ and $\widehat{U}$ are inner fibrations and $U$ is essentially $\kappa $-small. Then (9.31) exhibits $\widehat{\operatorname{\mathcal{E}}}$ as a fiberwise $\kappa $-cocompletion of $\operatorname{\mathcal{E}}$ (in the sense of Definition 9.4.1.12) if and only if the following conditions are satisfied:

$(1)$

For each object $C \in \operatorname{\mathcal{C}}$, the induced map of fibers $H_{C}: \operatorname{\mathcal{E}}_{C} \rightarrow \widehat{\operatorname{\mathcal{E}}}_{C}$ exhibits $\widehat{\operatorname{\mathcal{E}}}_{C}$ as a $\kappa $-cocompletion of $\operatorname{\mathcal{E}}_{C}$.

$(2)$

The functor $H$ is fully faithful.

$(3)$

The inner fibration $\widehat{U}$ is locally cartesian.

$(4)$

For each morphism $f: C \rightarrow C'$ of $\operatorname{\mathcal{C}}$, the contravariant transport functor $f^{\ast }: \widehat{\operatorname{\mathcal{E}}}_{C'} \rightarrow \widehat{\operatorname{\mathcal{E}}}_{C}$ preserves $\kappa $-small colimits.

Proof. Using Remark 9.4.1.14, we can reduce to the special case $\operatorname{\mathcal{C}}= \Delta ^1$, which follows from Proposition 9.4.1.11. $\square$