Proposition 9.4.5.10. Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a morphism of simplicial sets. The following conditions are equivalent:
- $(1)$
The morphism $F$ is a Morita equivalence.
- $(2)$
The morphism $F^{\operatorname{op}}$ is a Morita equivalence.
- $(3)$
For every uncountable cardinal $\kappa $, precomposition with $F$ induces an equivalence of $\infty $-categories $\operatorname{Fun}( \operatorname{\mathcal{D}}^{\operatorname{op}}, \operatorname{\mathcal{S}}^{< \kappa } ) \rightarrow \operatorname{Fun}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}^{< \kappa } )$.
- $(4)$
There exists an uncountable regular cardinal $\kappa $ such that $\operatorname{\mathcal{C}}$ and $\operatorname{\mathcal{D}}$ are essentially $\kappa $-small and precomposition with $F$ induces an equivalence of $\infty $-categories $\operatorname{Fun}( \operatorname{\mathcal{D}}^{\operatorname{op}}, \operatorname{\mathcal{S}}^{< \kappa } ) \rightarrow \operatorname{Fun}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}^{< \kappa } )$.