Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Proposition 7.7.5.6. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category which admits pullbacks and finite colimits. Then finite colimits in $\operatorname{\mathcal{C}}$ are universal if and only if $\operatorname{\mathcal{C}}$ satisfies the following pair of conditions:

$(a)$

Pushouts in $\operatorname{\mathcal{C}}$ are universal: that is, $\operatorname{\mathcal{C}}$ satisfies the second Mather cube theorem (Remark 7.7.5.2).

$(b)$

The initial object $\emptyset \in \operatorname{\mathcal{C}}$ is universal: that is, every morphism $C \rightarrow \emptyset $ is an isomorphism (Example 7.7.1.17).

Proof. According to Corollary 7.7.2.34, finite colimits in $\operatorname{\mathcal{C}}$ are universal if and only if, for every morphism $f: C' \rightarrow C$ of $\operatorname{\mathcal{C}}$, the pullback functor

\[ f^{\ast }: \operatorname{\mathcal{C}}_{/C} \rightarrow \operatorname{\mathcal{C}}_{/C'} \quad \quad X \mapsto C' \times _{C} X \]

preserves finite colimits. By virtue of Corollary 7.6.2.30, this is equivalent to the requirement that $f^{\ast }$ preserves both pushouts and initial objects. The desired result follows by allowing $f$ to vary (and using Corollary 7.7.2.34 again). $\square$