Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Remark 9.1.5.10. Let $\operatorname{\mathcal{C}}$ be a filtered $\infty $-category. For every set $I$, condition $(\ast _{I})$ of Lemma 9.1.5.2 depends only on the homotopy category $\mathrm{h} \mathit{\operatorname{\mathcal{C}}}$. Applying Proposition 9.1.5.8, we deduce that $\operatorname{\mathcal{C}}$ is $\kappa $-filtered if and only the homotopy category $\mathrm{h} \mathit{\operatorname{\mathcal{C}}}$ is $\kappa $-filtered.