Proposition 9.1.9.19 (Transitivity). Let $\kappa $, $\lambda $, and $\mu $ be regular cardinals satisfying $\kappa \trianglelefteq \lambda $ and $\lambda \trianglelefteq \mu $. For every $\infty $-category $\operatorname{\mathcal{C}}$, the following conditions are equivalent:
- $(1)$
The $\infty $-category $\operatorname{\mathcal{C}}$ admits $\mu $-small, $\kappa $-filtered colimits.
- $(2)$
The $\infty $-category $\operatorname{\mathcal{C}}$ admits $\mu $-small, $\lambda $-filtered colimits and $\lambda $-small, $\kappa $-filtered colimits.
Moreover, if these conditions are satisfied, then a functor $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ is $(\kappa , \mu )$-finitary if and only if it is both $(\kappa , \lambda )$-finitary and $(\lambda ,\mu )$-finitary.