Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Corollary 9.1.9.24. An $\infty $-category $\operatorname{\mathcal{C}}$ is cocomplete if and only if it admits finite colimits and small filtered colimits. If these conditions are satisfied, then a functor $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ preserves small colimits if and only if it preserves both finite colimits and small filtered colimits.

Proof. Apply Corollary 9.1.9.23 in the special case $\kappa = \aleph _0$. $\square$