Corollary 9.1.10.9. Let $\kappa $ be a small regular cardinal, let $\mathbb {K}$ be a collection of $\kappa $-small simplicial sets, and let $\operatorname{\mathcal{QC}}^{\mathbb {K}-\mathrm{cocont}}$ be the subcategory of $\operatorname{\mathcal{QC}}$ whose objects are $\mathbb {K}$-cocomplete $\infty $-categories and whose morphisms are $\mathbb {K}$-cocontinuous functors (see Notation 8.7.3.7). Then:
- $(1)$
The $\infty $-category $\operatorname{\mathcal{QC}}^{\mathbb {K}-\mathrm{cocont}}$ admits small $\kappa $-filtered colimits.
- $(2)$
The inclusion functor $\operatorname{\mathcal{QC}}^{\mathbb {K}-\mathrm{cocont}} \hookrightarrow \operatorname{\mathcal{QC}}$ is $\kappa $-finitary: that is, it preserves small $\kappa $-filtered colimits.