Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Corollary 9.2.3.5. Let $\kappa $ be a small regular cardinal and $f: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a functor of $\infty $-categories. Then $f$ exhibits $\operatorname{\mathcal{D}}$ as an $\operatorname{Ind}_{\kappa }$-completion of $\operatorname{\mathcal{C}}$ if and only if the following conditions are satisfied:

$(0)$

The $\infty $-category $\operatorname{\mathcal{D}}$ admits small $\kappa $-filtered colimits.

$(1)$

The functor $f$ is fully faithful.

$(2)$

For each object $X \in \operatorname{\mathcal{C}}$, the image $f(X)$ is a $\kappa $-compact object of $\operatorname{\mathcal{D}}$.

$(3)$

The $\infty $-category $\operatorname{\mathcal{D}}$ is generated under small $\kappa $-filtered colimits by the image of $f$.

Moreover, if $f$ is assumed only to satisfy conditions $(0)$, $(1)$, and $(2)$, then its $\operatorname{Ind}_{\kappa }$-extension $F: \operatorname{Ind}_{\kappa }(\operatorname{\mathcal{C}}) \rightarrow \operatorname{\mathcal{D}}$ is fully faithful.