Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Theorem 9.2.5.8. Let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a functor of $\infty $-categories. Then:

$(1)$

If the functor $F$ is right exact (in the sense of Definition 9.2.5.5), then it preserves finite colimits.

$(2)$

If the $\infty $-category $\operatorname{\mathcal{C}}$ admits finite colimits and $F$ preserves finite colimits, then $F$ is right exact.