Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Corollary 9.2.5.25. Let $\kappa \leq \lambda $ be regular cardinals, where $\lambda $ is uncountable. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category which is essentially $\lambda $-small and admits $\kappa $-small colimits. Then the covariant Yoneda embedding

\[ h_{\bullet }: \operatorname{\mathcal{C}}\rightarrow \operatorname{Fun}^{\kappa -\operatorname{lex}}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}_{< \lambda } ) \]

exhibits $\operatorname{Fun}^{\kappa -\operatorname{lex}}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}_{< \lambda } )$ as an $\operatorname{Ind}_{\kappa }^{\lambda }$-completion of $\operatorname{\mathcal{C}}$.