Corollary 9.2.5.27. Let $\operatorname{\mathcal{C}}$ be an essentially small $\infty $-category which admits finite colimits. Then the covariant Yoneda embedding
\[ h_{\bullet }: \operatorname{\mathcal{C}}\rightarrow \operatorname{Fun}^{\operatorname{lex}}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}}) \]
exhibits $\operatorname{Fun}^{\operatorname{lex}}( \operatorname{\mathcal{C}}^{\operatorname{op}}, \operatorname{\mathcal{S}})$ as an $\operatorname{Ind}$-completion of $\operatorname{\mathcal{C}}$.