Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Definition 9.2.6.1. Let $\operatorname{\mathcal{C}}$ be an $\infty $-category. We say that $\operatorname{\mathcal{C}}$ is compactly generated if it satisfies the following conditions:

$(a)$

The $\infty $-category $\operatorname{\mathcal{C}}$ admits small filtered colimits.

$(b)$

Every object $C \in \operatorname{\mathcal{C}}$ can be realized as the colimit of a small filtered diagram $\{ C_{\alpha } \} $, where each $C_{\alpha }$ is a compact object of $\operatorname{\mathcal{C}}$.