Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Exercise 9.2.6.14. Let $\kappa \leq \lambda $ be regular cardinals, where $\lambda $ is uncountable, and let $F: \operatorname{\mathcal{C}}\rightarrow \operatorname{\mathcal{D}}$ be a functor of $\infty $-categories. Show that $F$ is a Morita equivalence if and only if $\operatorname{Ind}^{\lambda }_{\kappa }(F): \operatorname{Ind}^{\lambda }_{\kappa }(\operatorname{\mathcal{C}}) \rightarrow \operatorname{Ind}^{\lambda }_{\kappa }(\operatorname{\mathcal{D}})$ is an equivalence of $\infty $-categories.