Definition 9.2.7.1. Let $X$ be a Kan complex. We say that $X$ is essentially finite if there exists a weak homotopy equivalence $K \rightarrow X$, where $K$ is a finite simplicial set.
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$
Definition 9.2.7.1. Let $X$ be a Kan complex. We say that $X$ is essentially finite if there exists a weak homotopy equivalence $K \rightarrow X$, where $K$ is a finite simplicial set.