Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Proposition 9.2.7.11. Let $\kappa $ be an uncountable regular cardinal and let $X$ be a Kan complex. The following conditions are equivalent:

$(1)$

The Kan complex $X$ is essentially $\kappa $-small (Definition 4.7.5.1).

$(2)$

The Kan complex $X$ belongs to the smallest full subcategory of $\operatorname{\mathcal{S}}$ which contains $\Delta ^0$ and is closed under $\kappa $-small colimits.

$(3)$

The Kan complex $X$ is $\kappa $-compact when viewed as an object of the $\infty $-category $\operatorname{\mathcal{S}}$.

Proof of Proposition 9.2.7.11. Apply Proposition 9.2.7.12 in the special case where $\lambda = \operatorname{\textnormal{\cjRL {t}}}$ is a strongly inaccessible cardinal (see Example 9.1.7.11). $\square$