Corollary 9.2.7.15. Let $\kappa $ be a small regular cardinal. Then the inclusion functor $\operatorname{\mathcal{S}}_{< \kappa } \hookrightarrow \operatorname{\mathcal{S}}$ exhibits $\operatorname{\mathcal{S}}$ as an $\operatorname{Ind}_{\kappa }$-completion of $\operatorname{\mathcal{S}}_{< \kappa }$.
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$