Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Construction 9.2.9.2. Let $\kappa \leq \lambda \leq \mu $ be regular cardinals, let $\operatorname{\mathcal{C}}$ be an $\infty $-category, and let us abuse notation by identifying $\operatorname{Ind}_{\kappa }^{\lambda }(\operatorname{\mathcal{C}})$ with a full subcategory of $\operatorname{Ind}_{\kappa }^{\mu }(\operatorname{\mathcal{C}})$ (Remark 9.2.9.1). We let

\[ T: \operatorname{Ind}_{\lambda }^{\mu }( \operatorname{Ind}_{\kappa }^{\lambda }(\operatorname{\mathcal{C}}) ) \rightarrow \operatorname{Ind}_{\kappa }^{\mu }(\operatorname{\mathcal{C}}) \]

denote the $\operatorname{Ind}_{\lambda }^{\mu }$-extension of the inclusion functor $\operatorname{Ind}_{\kappa }^{\lambda }(\operatorname{\mathcal{C}}) \hookrightarrow \operatorname{Ind}_{\kappa }^{\mu }(\operatorname{\mathcal{C}})$ (see Definition 9.2.1.13). We will refer to $T$ as the transitivity functor.