Corollary 7.5.4.11 (Homotopy Invariance). Let $\operatorname{\mathcal{C}}$ be a category, let $\overline{\mathscr {F}}, \overline{ \mathscr {G} }: \operatorname{\mathcal{C}}^{\triangleleft } \rightarrow \operatorname{Set_{\Delta }}$ be functors, and let $\alpha : \overline{ \mathscr {F} } \rightarrow \overline{ \mathscr {G} }$ be a natural transformation. Suppose that, for every object $C \in \operatorname{\mathcal{C}}$, the induced map $\alpha _{C}: \overline{ \mathscr {F} }(C) \rightarrow \overline{ \mathscr {G} }(C)$ is a weak homotopy equivalence. Then any two of the following conditions imply the third:
- $(1)$
The functor $\overline{ \mathscr {F} }$ is a homotopy limit diagram.
- $(2)$
The functor $\overline{ \mathscr {G} }$ is a homotopy limit diagram.
- $(3)$
The natural transformation $\alpha $ induces a weak homotopy equivalence $\overline{ \mathscr {F} }( {\bf 0} ) \rightarrow \overline{ \mathscr {G} }( {\bf 0} )$, where ${\bf 0}$ denotes the cone point of $\operatorname{\mathcal{C}}^{\triangleleft }$.