Kerodon

$\Newextarrow{\xRightarrow}{5,5}{0x21D2}$ $\newcommand\empty{}$
$\Newextarrow{\xhookrightarrow}{10,10}{0x21AA}$

Proposition 8.6.7.2. Let $\operatorname{\mathcal{E}}$ be a locally Kan simplicial category. Then:

$(1)$

The simplicial category $\operatorname{\mathcal{E}}^{\asymp }$ of Notation 8.6.7.1 is locally Kan.

$(2)$

The forgetful functor $\pi : \operatorname{\mathcal{E}}^{\asymp } \rightarrow \operatorname{\mathcal{E}}$ is a weak equivalence of simplicial categories (see Definition 4.6.8.7).

$(3)$

The functor $\pi $ induces an equivalence of $\infty $-categories $\operatorname{N}_{\bullet }^{\operatorname{hc}}( \operatorname{\mathcal{E}}^{\asymp } ) \rightarrow \operatorname{N}_{\bullet }^{\operatorname{hc}}(\operatorname{\mathcal{E}})$.

Proof. Assertions $(1)$ and $(2)$ follow immediately from Corollary 8.1.2.3; assertion $(3)$ then follows from Corollary 4.6.8.8. $\square$